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3 Department of Physics, ‘Babeş-Bolyai’ University, 40084 Cluj Napoca, Romania
4 Department of Physics, Sharif University of Technology, 14588-89694, Tehran, Iran

Received 26 May 2007, in final form 17 September 2007
Published 10 October 2007
Online at stacks.iop.org/JPhysCM/19/466105

Abstract
Recent experiments demonstrated unexpected, even intriguing properties of
certain glassy materials in magnetic fields at low temperatures. We have studied
the magnetic field dependence of the static dielectric susceptibility and the heat
capacity of glasses at low temperatures. We present a theory in which we
consider the coupling of the tunnelling motion to nuclear quadrupoles in order
to evaluate the static dielectric susceptibility. In the limit of weak magnetic field
we find the resonant part of the susceptibility increasing like B2 while for large
magnetic field it behaves as 1/B . In the same manner we consider the coupling
of the tunnelling motion to nuclear quadrupoles and angular momentum of
tunnelling particles in order to find the heat capacity. Our results show the
Schottky peak for the angular momentum part, and B2 dependence for the
nuclear quadrupole part of the heat capacity, respectively. We discuss whether
or not this approach can provide a suitable explanation for such magnetic
properties.

1. Introduction

At very low temperatures, glasses and other amorphous systems show similar thermal, acoustic
and dielectric properties [1], which are in turn very different from those of crystalline
solids. Below 1 K, the specific heat Cv of dielectric glasses is much larger and the thermal
conductivity κ orders of magnitude lower than the corresponding values found in their
crystalline counterparts. Cv depends approximately linearly and κ almost quadratically on
temperature [2], respectively. This is in clear contrast to the cubic dependence observed in
crystals for both properties, well understood in terms of Debye’s theory of lattice vibrations.
Above 1 K, Cv still deviates strongly from the expected cubic dependence, exhibiting a hump
in Cv/T 3 which is directly related to the so-called boson peak observed by neutron or Raman
vibrational spectroscopies [3]. To explain these, it was considered that atoms, or groups of
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atoms, are tunnelling between two equilibrium positions, the two minima of a double-well
potential. The model is known as the two-level system (TLS) [4, 5]. In the standard TLS model,
these tunnelling excitations are considered as independent, and some specific assumptions are
made regarding the parameters that characterize them (for a review see for example [1]).

In recent years an intriguing magnetic field dependence of the dielectric and coherent
properties of some insulating glasses was reported. In 1998 Strehlow et al observed a sharp kink
at T = 5.84 mK in the dielectric constant of the multi-component glass BaO–Al2O3–SiO2 [6]
measured in very weak magnetic field, of the order of 10 μT. The effect was several orders of
magnitude larger than what is expected, considering the absence of magnetic impurities in this
insulator. Later studies carried on in magnetic field ranging up to 25 T and temperatures well
below 100 mK revealed for several materials a complex and strong dependence of the dielectric
response on the external magnetic field, on the applied voltage and on temperature [6–10]. Even
more surprising phenomena were observed in the spontaneous polarization echo experiments
on BaO–Al2O3–SiO2 [11]. The increase of the echo amplitude by a factor of four was reported
when varying the magnetic field in the range of 0–200 mT. Similar results were later reported
in the case of amorphous mixed crystal KBr1−x CNx [12]. To date a unified theory does not
exist while some contradictions are present in the recent works. We have clear evidence that
such intriguing magnetic properties are connected with the low-energy tunnelling excitations
present in almost all amorphous solids. These tunnelling states are known to be proved very
well by the echo experiments [14]. On the other hand these excitations have been reported as
showing up at very low temperatures (usually T < 100 mK), where the TLSs are responsible
for the thermal and dynamical properties of glasses [12, 13].

Several generalizations of the standard TLS model have been reported after the anomalous
behaviour of glasses in a magnetic field. The main question for such models is how a TLS
should interact with the magnetic field, it being not clear how the tunnelling entity would
acquire a finite magnetic moment. According to the proposed solutions, the models can be
divided into ‘orbital’ and ‘spin’ models.

In the orbital models, the tunnelling entities are not simple two-state systems, but perform
some kind of circular motion. Due to the presence of the magnetic field, a charged particle
moves on a loop enclosing a magnetic flux and thus can acquire an Aharonov–Bohm phase. In
order to obtain such a closed trajectory, a ‘Mexican-hat potential’ was proposed by Kettemann,
instead of the usual double-well potential [15]. The resulting flux φ = πr 2 B , with r being
the hat radius, proves to be smaller by several orders of magnitude than the flux φ0 = h/e.
Even though the existence of cluster configurations of atoms or molecules containing up to
N = 200 units which contribute to collective tunnelling were reported (see for example [16]
and references therein), it is improbable that such an effect can be extended to an amount of
the order of N ∼ 105. A detailed discussion of this aspect has been presented in [17]. The
combination of the Aharonov–Bohm effect with a flip–flop configuration of the two interacting
TLSs has been proposed to explain the dependence of the echo amplitudes on the applied
magnetic field [18]. A different modality to consider the occurrence of an apparent flux phase
having the correct order of magnitude was proposed by Würger [19]. The mechanism proposed
consists of pair of coupled TLSs and a non-linear coupling to the external voltage. Still, the
required degeneracy of the nearby TLS is not in accordance with the known distribution for
the tunnel splitting. Another possibility for the formation of closed loops was proposed by Le
Cochec [9], namely a jagged and uneven potential landscape between the two wells.

To conclude, the ‘orbital’ models can provide an explanation for some of the magnetic
field effects by considering the flux dependence of the tunnelling splitting. Unfortunately,
some assumptions have been made which cannot be reconciled with the standard features of
the tunnelling model.
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The spin models [20] provide an alternative mechanism for the observed magnetic
properties, especially for the polarization echoes [21]. A direct coupling between the nuclear
spin of the tunnelling entities and the applied magnetic field is considered. We can easily notice
that the multi-component glasses used in the echo experiments contain one or several kinds of
atoms that carry a nuclear quadrupole. For example, in the case of BaO–Al2O3–SiO2 we find
the abundant isotopes 27Al (I = 5/2) and less frequent 137Ba (I = 3/2); for the boro-silicate
we find the abundant isotope 11B (I = 3/2). However, the echo experiments convincingly
demonstrate the role of the nuclear quadrupole moments in glasses. According to this model
the magnetic properties should not be measured in materials whose nuclei contain no finite
quadrupole moment. Until now no counter-example has been reported. Moreover, recently the
role of the quadrupole moments has been systematically studied and confirmed by the echo
experiments in ordinary C3H8O3 and deuterated C3D8O3 glycerol [22].

The question of whether or not the nuclear quadrupole should be responsible for the
magnetic field dependence of the dielectric constant seems to be natural. Relevant experiments
involve temperature where the thermal energy is significantly larger than the quadrupole
splitting. For thermal tunnelling systems, with TLS splitting (E) much larger than the
quadrupole splitting, it has been proven already that the resonant, or van Vleck, susceptibility
is rather insensitive to the nuclear quadrupole motion [23]. For such systems the relaxation or
Debye part of the susceptibility shows a large magnetic field dependence [24]. By considering
TLSs with small splitting comparable to the nuclear quadrupole energies and using a numerical
estimation, a pronounced dependence of the electric permittivity of the applied magnetic field
was obtained [25].

In this paper we have studied the magnetic field dependence of the dielectric susceptibility
and the heat capacity in cold glasses, taking into account the quadrupole effects. The
general expressions in the mentioned cases are complex; however, we have obtained the
thermodynamic behaviour in the small and large magnetic field limits. In section 2 we introduce
the nuclear spins in the frame of the TLS. The resulting magnetic field dependent part of the
susceptibility is given in section 3, using the perturbation expansion for two different regimes,
namely small and large magnetic fields. We end this section with a discussion of our results
and a comparison with available experimental data and previous calculations. In section 4, the
specific heat has been calculated in three separate terms, namely TLS, angular momentum and
nuclear spin parts. Finally. the conclusion is presented with a discussion of our results and a
comparison with available experimental data [26].

2. TLS with a nuclear spin

The standard TLS can be described as a particle or a small group of particles moving
in an effective double-well potential (DWP). At very low temperatures, only the ground
states corresponding to the two wells are relevant. Using a pseudo-spin representation the
Hamiltonian of such a TLS is written

HTLS = 1
2�0σx + 1

2�σz, (1)

where σz is the reduced two-state coordinate,

σz = |L〉〈L| − |R〉〈R|.
The eigenvalues of σz are ±1, labelling the localized states in the two wells (left well L, right
well R), while the tunnelling matrix is taken into account by

σx = |L〉〈R| + |R〉〈L|.
3
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We denoted by � the energy off-set at the bottom of the wells, and by �0 the tunnel matrix
element. According to the randomness of the glassy structure, the energy difference between
the two wells

E =
√
�2

0 +�2, (2)

has a broad distribution. The energy off-set and the tunnelling matrix element obey a
distribution law

P(�,�0) = P0

�0
, (3)

where P0 is a constant. It is useful to define new spin operators using the relations

σx = uσE −wσA,

σz = wσE + uσA,
(4)

such that the TLS Hamiltonian becomes diagonal

H D
TLS = E

2
σE . (5)

We used the notations

u = �0

E
, w = �

E
(6)

which satisfy u2 +w2 = 1.
For the moment there is no rigorous theory for tunnelling in glasses. It is assumed that

atoms or groups of atoms participate in one TLS. As we mentioned before, in the case of the
multi-component glasses, one or several of the tunnelling atoms carry a nuclear magnetic dipole
and an electric quadrupole. When the system moves from one well to another, the atoms change
their positions by a fraction of an ångström.

We can describe the internal motion of the nuclei by a nuclear spin I of absolute value
I2 = h̄2 I (I + 1). This is related to a magnetic dipole moment gμNI/h̄, where g is the Landé
factor and μN ≈ 5 × 10−27 J T−1 is the nuclear magneton. The magnetic dipole couples to an
external magnetic field B = BeB and gives rise to a Zeeman term

H (1)
Z = −εzeB · I, (7)

where the frequency εz = gμN B/h̄ is directly proportional to B .
For a nucleus with spin quantum number I � 1 the charge distribution ρ(r) is not isotropic.

Besides the charge monopole, an electric quadrupole moment can be defined with respect to an
axis e

Q =
∫

d3r [3(r · e)2 − r2]ρ(r). (8)

This can couple to an electric field gradient (EFG) at the nuclear position, expressed by the
curvature of the crystal field potential. The potential describing this coupling reads as [27]

VQ = −eQ

I (2I − 1)
[V11 I 2

1 + V22 I 2
2 + V33 I 2

3 ]. (9)

The bases used here (e1, e2, e3) are the principal axes of the tensor Vi j which describes the
electric field gradient, and e is the electron charge. According to the Laplace equation the
potential obeys V11 + V22 + V33 = 0. If we define the asymmetry parameter η = V22−V33

V11
, the

quadrupole potential can be expressed as

VQ = εq [3I 2
1 + η(I 2

2 − I 2
3 )− I 2], (10)

where we denote by εq = −eQV11
4I (2I−1) the quadrupole coupling constant.

4
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3. Static dielectric susceptibility

Our purpose is to determine the magnetic field dependent part of the static dielectric
susceptibility for a TLS coupled with a nuclear quadrupole. Therefore, we have to consider
the interaction of the dipole operator (1/2)Pσz with an external electric field F . The dipole
moment arises from the relative motion of partial charges related to the atoms forming the
tunnel system. This interaction will be described by

VF = (P · F)σz . (11)

If we denote

Z = Tr{e−βH }, (12)

the partition function of the system, where H is the total Hamiltonian; the trace, denoted later
by 〈· · ·〉 involves two-state and spin variables. Here β = 1

kBT , kB is the Boltzmann constant and
T is temperature. We can express the susceptibility as

χ̂ = −
〈
∂2 f

∂F2

〉
, (13)

where f = − 1
β

ln Z represents the free energy. The statistical average also implies an
integration over the two parameters of the TLS, the energy off-set and the tunnelling matrix
element, according to the distribution law given by equation (3), as well as an integration
over the nuclear quadrupole parameters; this step, denoted by (· · ·), will be discussed at the
end of the calculation. We can write the partition function in terms of the energy levels Ei,m

(eigenvalues of the total Hamiltonian)

Z =
∑

i=L/R

I∑
m=−I

e−βEi,m . (14)

Therefore, the susceptibility contains three terms:

χ(1) = − 1

Z

∑
i,m

e−βEi,m
∂2

∂F2
Ei,m,

χ(2) = β

Z

∑
i,m

e−βEi,m

[
∂

∂F
Ei,m

]2

,

χ(3) = − β

Z 2

[∑
i,m

e−βEi,m
∂

∂F
Ei,m

]2

.

(15)

The eigenenergies (Ei,m) of the full Hamiltonian cannot be obtained analytically in the general
case because the Zeeman and nuclear quadrupole terms do not commute. In this respect we
will consider two different regimes where we can obtain the analytic results in a perturbation
framework. In order to develop a perturbation expansion we will consider two separate cases,
a small external magnetic field and a large one, respectively.

3.1. Small magnetic field

We begin with the case in which the Zeeman term is smaller than the nuclear quadrupole
potential, εz � εq , thus the Zeeman term is treated as a weak perturbation. If we consider
the simplest symmetric case, η = 0, then the nuclear quadrupole potential in the I1 basis has
the following representation:

Hq =
[
εL

q VI,m

(
1 + σz

2

)
+ εR

q VI,m

(
1 − σz

2

)]
|I,m〉〈I,m|, (16)

5
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where we have defined VI,m = 3m2 − I (I + 1), and εL/R
q as the quadrupole coupling constant

in the left and the right well. Therefore, in the σE basis we can write

Hq = [εqVI,m + ε′
qVI,m(wσE + uσA)]|I,m〉〈I,m|. (17)

Here we have defined εq = 1
2 (ε

L
q + εR

q ) and ε′
q = 1

2 (ε
L
q − εR

q ). We can split the total
Hamiltonian into two parts,

H = H (0) + δH, (18)

where the unperturbed part is

H (0) =
[

E

2
σE + εqVI,m − mεz cos θ ′

]
|I,m〉〈I,m|, (19)

and the perturbation term is

δH = [(ε′
qVI,m + P F)(wσE + uσA)]|I,m〉〈I,m| − αm′

− εz|I,m〉〈I,m + 1|
− αm′

+ εz|I,m〉〈I,m − 1|. (20)

We have defined

αm′
± = √

I (I + 1)− m(m ± 1) sin θ ′e−[±iφ ′ ], (21)

where θ ′ and φ′ are the direction of magnetic field in the basis (e1, e2, e3); here we have
assumed that e1 = ez .

We apply the perturbation theory to get the second order correction for the energy levels
of the system, Ei,m . Therefore, the first order correction is

δE (1)
i,m = w(P · F + ε′

qVI,m)〈i |σE |i〉. (22)

For the sake of simplicity we use 〈i |σE |i〉 instead of 〈i,m|σE |i,m〉, which is independent of
the magnitude of m. The second order correction of the energy reads

δE (2)
i,m =

∑
j,n|( j,n) �=(i,m)

|〈i,m|δH | j, n〉|2
E (0)

i,m − E (0)
j,n

= ε2
z

[ |α′m+ |2
(2m − 1)εq − εz cos θ ′

− |α′m− |2
(2m + 1)εq − εz cos θ ′

]
+ u2

E
(P · F + ε′

qVI,m)
2〈i |σE |i〉, (23)

where E (0)
i,m is the eigenvalue of the unperturbed part of the Hamiltonian H (0). Taking into

account the second order correction of energy, the susceptibility is calculated by equation (15).
By using the relations

∂

∂F
Ei,m |F=0 = wP〈i |σE |i〉,

and

∂2

∂F2
Ei,m |F=0 = 2P2u2

E
〈i |σE |i〉, (24)

we can immediately express the second term of the susceptibility

χ2 = βP2w2. (25)

The third term is

χ3 = −P2w2βt2, (26)

6
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where we defined t = tanh(βE/2). The first term of the susceptibility contains the second
derivative of the energy levels with respect to the electric field. After some simple algebra, χ1

can be written as

χ1 = 2P2u2

Z E

∑
m

[e−βEd,m − e−βEu,m ], (27)

where Z = ∑
m[e−βEd,m + e−βEu,m ]. Defining �m as

�m = εqVI,m − εzm cos θ ′ + ε2
z

( |α′m+ |2
(2m − 1)εq − εz cos θ ′ − |α′m− |2

(2m + 1)εq − εz cos θ ′

)
,

one can write that

Ei,m |F=0 =
[

E

2
+ u2

E
(ε′

qVI,m)
2

]
〈i |σE |i〉 +�m . (28)

The partition function can be written as Z = ∑
m cosh[ βE

2 + u2β

E (ε
′
qVI,m)

2]e−β�m . Then the
first term of the susceptibility becomes

χ1 = 2P2u2

Z E

∑
m

sinh

[
βE

2
+ u2β

E
(ε′

qVI,m)
2

]
e−β�m . (29)

If at this point we assume ε′
q = 0 and B = 0 we will simply recover the result of the standard

TLS model, χ1 = 2P2u2t
E .

3.1.1. Thermal expansion. The experiments we are addressing are performed at temperatures
between a few tens and a few hundreds of millikelvin, where the thermal energy kBT ∼ 10−24 J
is a few orders of magnitude larger than the Zeeman term (at B = 1 T for example
μN B/kB ∼ 0.4 mK) or the quadrupole coupling (echo experiments suggested that εq ∼ εz

at 200 mT, so smaller than 1 mK). We can conclude that the parameters βεz , βεq are small,
which justifies an expansion of χ1 and the exponential factors like e±βεz,q . Carrying out such
an expansion in the thermal energy, we can easily show that

�χ1(B) 	 2P2u4

(2I + 1)E2
(1 − t2)ε′2

q β
2ε2

z

×
∑

m

[ |α′m+ |2
(2m − 1)εq − εz cos θ ′ − |α′m− |2

(2m + 1)εq − εz cos θ ′

]
. (30)

In order to complete the calculation of the magnetic field dependent part of the static
susceptibility we need to perform the integral over the TLS parameters, considering the
distribution function defined in equation (3); for this regime (εz � εq), which can be rewritten
as

�χ1(B) 	 2P2κξ

(2I + 1)
β3ε′2

q

ε2
z

εq
, (31)

where κ = [ 1
2I+1 (

∑
m V2

I,m)(
∑

m αm) − ∑
m V2

I,mαm], αm = ∑
m[ |α′m+ |2

(2m−1) − |α′m− |2
(2m+1) ], and

ξ is a (non-magnetic-field-dependent) constant which comes from averaging over the TLS
parameters, which depends on the magnitude of the lower and upper bound of the two-level
splitting, �0 min and Emax. It can be easily shown that in the case of the same EFG in the two
wells (εL

q = εR
q ) the dependence of the static dielectric susceptibility on the magnetic field will

vanish.

7



J. Phys.: Condens. Matter 19 (2007) 466105 A Akbari et al

3.2. Large magnetic field

Let us denote by (e1, e2, e3) the basis in the left well and by (e′
1, e′

2, e′
3) the corresponding one

in the right well. If we suppose that e′
3‖e3‖ẑ and e′

1, e1 make an angle θ with each other [25],
we can write the total Hamiltonian in the basis of the operator I3 = Iz in the following form:

(
H L + (�2 + P F) · 1 �0

2 · 1
�0
2 · 1 H R − (�2 + P F) · 1

)
(32)

where 1 is the unit matrix of rank (2I + 1). H L = V L
Q + H (1)L

Z and H R = V R
Q + H (1)R

Z are
defined for particles in the left and right wells, respectively. The state in each well (L or R) can
be characterized by |ψL(R)

I,m 〉 = |L(R)〉⊗ |I,m〉 and consequently the matrix element of the
Hamiltonian is defined by the following equation:

H L(R)
m,n = 〈ψL(R)

I,m |H L(R)|ψL(R)
I,n 〉. (33)

After some simple algebra (see for example [28]) we can easily show that for H R
m,n we obtain

H R
m,n = −εz cos θ ′′mδm,n + εR

q δm,nϒm,m − εz sin θ ′′[eiφ ′′
αm

−δm+1,n + e−iφ ′′
αm

+δm−1,n]

+ εR
q

4
δm−2,nϒm,m−2e2iθ + εR

q

4
δm+2,nϒm,m+2e−2iθ , (34)

where θ ′′ and φ′′ define the direction of magnetic field in the basis (e1, e2, e3); αm− and αm+
denote

αm
± = √

I (I + 1)− m(m ± 1), (35)

and

ϒm,m =
[

1

2
I (I + 1)− 3

2
m2 + η

2
[I (I + 1)− 3m2]

]
,

ϒm,m−2 = 1
4 [(3 − η)[I (I + 1)− (m − 1)(m − 2)] 1

2 [I (I + 1)− m(m − 1)] 1
2 ],

ϒm,m+2 = 1
4 [(3 − η)[I (I + 1)− (m + 1)(m + 2)] 1

2 [I (I + 1)− m(m + 1)] 1
2 ].

(36)

In a similar manner we can obtain the matrix element of the Hamiltonian for the particles
in the left well H L

m,n by taking θ = 0 and changing εR
q �−→ εL

q in equation (34).
We will use the perturbation approach assuming that εz  εq (here for satisfying the

perturbation condition we consider the special magnetic direction in a way that θ ′′ � π
2 ). It

proves to be useful to change the representation of the Hamiltonian into the basis of the spin
operators σE and σA. In this basis we split the total Hamiltonian of system as H D

0 + δV ,
where H D

0 , the unperturbed part, will now contain the diagonal matrix elements of the total
Hamiltonian except those coming from VF ; therefore, the perturbation, δV , will contain the
non-diagonal terms of the Hamiltonian together with VF . We find that

H D
0 =

I∑
m=−I

[
E

2
σE − (mεz cos θ ′′)1

]
|I,m〉〈I,m|,

and

〈m|δV |n〉 = εmn + ηmnwσE + ηmnuσA. (37)

We denote εL/R
mn = 〈m|δV L/R |n〉 and

εmn = 1
2 (ε

L
mn + εR

mn), ηmn = 1
2 (ε

L
mn − εR

mn). (38)

The diagonal part of the perturbation term is

V D
F = (wσE + uσA)P · F. (39)

8
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The first order correction of the energy level will be obtained as

δE (1)
i,m = wP · F〈i |σE |i〉 + εmm + ηmmw〈i |σE |i〉, (40)

and the second order one will be

δE (2)
i,m = P2 F2u2

∑
j �=i

1

E (0)
i,m − E (0)

j,m

+ P Fu2
∑
j �=i

[ |ηmm〈 j |σA|i〉|2
E (0)

i,m − E (0)
j,m

+ C.C.

]

+
∑
j �=i

|ηmm |2u2

E (0)
i,m − E (0)

j,m

+
∑
n �=m

|〈i |σE |i〉ηmnw + εmn1|2
E (0)

i,m − E (0)
i,n

. (41)

Since we have assumed that δV does not contain any diagonal term, εmm = ηmm = 0, the
corrections to the energy levels simplify to

δE (1)
i,m = wP · F〈i |σE |i〉, (42)

and

δE (2)
i,m = P2 F2u2

E
〈i |σE |i〉 +

∑
n �=m

|〈i |σE |i〉ηmnw + εmn1|2
E (0)

i,m − E (0)
i,n

. (43)

For the large magnetic field regime we calculate the first and the second derivatives of Ei,m

with respect to the electric field

∂

∂F
Ei,m |F=0 = wP〈i |σE |i〉,

and

∂2

∂F2
Ei,m |F=0 = 2P2u2

E
〈i |σE |i〉. (44)

We can easily express the susceptibility

χ(1) = 2P2u2

Z E

∑
m

[e−βEd,m − e−βEu,m ]. (45)

Here Z = ∑
m[e−βEd,m + e−βEu,m ] is the partition function, and Ed,m and Eu,m are defined by

Ei,m |F=0 = E

2
〈i |σE |i〉 − m cos θ ′′εz +

∑
n �=m

|〈i |σE |i〉ηmnw + εmn1|2
E (0)

i,m − E (0)
i,n

. (46)

3.2.1. Thermal expansion. Let us remember here that the thermal energy exceeds by a few
orders of magnitude the Zeeman energy and the nuclear quadrupole potential. For this reason
we can carry out a thermal expansion in terms of βεq , βεz and find

e−βEi,m = e−β( E
2 〈i|σE |i〉)

[
1 + m cos θ ′′βεz − β

∑
n �=m

|〈i |σE |i〉ηmnw + εmn1|2
−cosθ ′′εz(m − n)

]
+ O(β2ε2). (47)

After some algebra, we can easily write

χ(1) = 2P2u2

E
t + 2βP2u2

E(2I + 1)
(1 − t2)

∑
m,n �=m

w
η∗

mnεmn + ηmnε
∗
mn

cos θ ′′εz(m − n)
+ O(β2ε2). (48)

Similar to the small magnetic field regime, from equations (15) and (44) we can
straightforwardly show that

χ(2) + χ(3) = P2w2β(1 − t2). (49)

9
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The magnetic field dependent correction of the susceptibility will be

δχ(B) = 4βP2

E(2I + 1)
(1 − t2)wu2

∑
m,n �=m

Re[η∗
mnεmn]

cos θ ′′εz(m − n)
+ O(β2ε2). (50)

If we set εq = 0 and assume that I = 0, we recover once more the result of the standard TLS
model,

χTLS = 2P2u2

E
t + P2w2β(1 − t2). (51)

By averaging over the TLS parameters according to the distribution function (3), we obtain

δχ(B) = 4βP2ξ ′

(2I + 1)

∑
m,n �=m

Re[η∗
mnεmn]

cos θ ′′εz(m − n)
+ O(β2ε2), (52)

where ξ ′ is the numeric (non-magnetic-field-dependent) constant, which depends on the

magnitude of Emax and �0 min. We can easily see that δχ(B) ∼ βε̄2
q

εz
, where ε̄2

q ∝ [(εL
q )

2 −
(εR

q )
2].
As we expected from the beginning, if we neglect the phase difference between the nuclear

moment in the wells and if we assume that the EFGs in both wells are the same (εL
q = εR

q ),
then we do not find any magnetic dependence in the second order perturbation (equations (31)
and (52)).

3.3. Discussion on the field dependence of dielectric susceptibility

In this section we have addressed the question of whether or not the coupling of the two-
state coordinate and the nuclear spin variables through the nuclear quadrupole potential in
an inhomogeneous crystal field can be taken into account as the source of the magnetic field
dependence of the dielectric susceptibility.

Analysing the existent data regarding the dielectric susceptibility as a function of the
magnetic field of different oxide glasses and mixed crystals [6–10], we can notice along
with a pronounced bump around 200 mT some irregular oscillations. The curvature of the
susceptibility changes its sign a few times up to 5 T magnetic field. The amplitude of the
real part of the susceptibility seems to be about 10% of the TLS susceptibility, corresponding
to approximately 10−4 of the dielectric constant. Relevant experiments involve temperatures
from tens of millikelvin to a few hundred. We can observe that in this range the dielectric
constant varies with the inverse temperature, 1/T .

The present work reconsiders the static dielectric susceptibility of a glassy systems in an
external magnetic field, implementing a perturbation approach for the energy levels. Starting
from the coupling of the nuclear quadrupole with the tunnelling system, calculations have been
performed for two different regimes, i.e. small and large external magnetic fields with respect
to the nuclear quadrupole potential. We have found that the magnetic field dependent part of
the susceptibility in both regimes is the following:

�χsmall(B) ∼ β2ε2
z

ε ′2
q

εq
,

�χlarge(B) ∼ β
ε̄2

q

εz
.

As it is obvious from the above results, the dielectric susceptibility depends on the magnetic
field in the second order correction of the perturbation scheme via the Zeeman and the nuclear

10
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quadrupole terms. This correction is directly the result of different electric field gradients
(EFGs) in the two wells. In the small magnetic field regime the correction increases with
B2 while it decreases inversely with field (1/B) in the large magnetic field. The dependence
on the temperature was put into evidence in agreement with the existent experimental data.
The magnetic field dependence will disappear in the second order corrections if we take the
same EFG in both wells. We would like to recall that the previous existing perturbation
calculations [23] which considered the same EFG provides a magnetic field dependence of
the dielectric susceptibility only to the fourth order of expansion.

The theoretical approach we have used does not allow us to calculate the static dielectric
susceptibility for the case where the applied magnetic field has such values such that the
Zeeman energy and the nuclear quadrupole have similar magnitudes, εz 	 εq . But for this
regime we know [23] that the magnetic field dependent part of the static susceptibility χ is
proportional to the small ratio [(εzεq)/T 3]2, this ratio being of the order of 10−6 (one millionth
part) for T ∼ 1 K.

We have to mention here that our calculation provides only the static limit (ω = 0) of this
contribution.

The dynamical susceptibility of a simple TLS was expressed by Jäckle [29],

χ rel
TLS(ω) =

〈
P2w2 β

cosh2(βE/2)

iγ

ω + iγ

〉
, (53)

where γ is the relaxation rate. Now, by considering the coupling of the nuclear quadrupole to
the tunnelling motion, the dynamic susceptibility proves to be more complicated, but it can be
generally expressed as [24]

χ rel(ω) =
〈

P2w2 β

cosh2(βE/2)

∑
m

Am
irm

ω + irm

〉
, (54)

where rm represents the eigenvalues of the relaxation rate matrix, and Am the corresponding
amplitudes (m = 0, . . . , 2I+1). In the limit ofω → 0, an approximation of the susceptibility is
provided by equations (31) and (52) for the two considered regimes. Recalling that the relevant
experiments are performed at frequencies in the range of kilohertz, and that the relaxation rates
should be extremely small quantities (details will be give elsewhere [24]), we can conclude that
such a limiting case cannot provide a proper explanation for the existent experimental data.

The method we developed cannot provide a plausible value for the relative magnitude of
the magnetic field dependent part with respect to the simple TLS susceptibility. We do not find
oscillations of the dielectric susceptibility at magnetic fields of the order of 1 T.

4. The heat capacity

Our purpose is to find the magnetic field dependence of the heat capacity in multi-component
glasses. To the best of our knowledge there are not many experimental data for heat capacity
of (nonmagnetic) glasses in the presence of magnetic field. Therefore, we assume that the
tunnelling particles have an angular momentum, J (intrinsic angular momentum such as
electron spin). Then, we must add an additional term to the Hamiltonian, which in the presence
of magnetic field leads to

H (2)
Z = −ε ′

z Jz . (55)

The energy scale is ε ′
z = gEμB B/h̄, μB is the Bohr magneton and gE is the electronic Landé

factor. Here we have neglected the spin–spin interaction in the Hamiltonian. We have also

11
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assumed that the quantization axis of angular momentum, Jz , is in the direction of eB (for more
detail, see the appendix). The total Hamiltonian of the system is then

H = HTLS + HZ + HQ.

Here HZ = H (1)
Z + H (2)

Z (defined in equations (7), (55)) and

HQ =
(

1 + σz

2

)
V L

Q +
(

1 − σz

2

)
V R

Q , (56)

where V R(L)
Q is defined in equation (10) for the particles in the right (left) well [23]. The heat

capacity is expressed by the following relation:

Cv = 1

kBT 2

〈
∂2 ln Z

∂β2

〉
, (57)

where Z is the partition function, which is a sum over the TLS, spin and angular momentum
degrees of freedom. If we neglect the phase difference between the nuclear moments in the two
wells (taking θ = 0) and assume that the EFGs in both wells are the same (εR

q = εL
q = εq ),

then the partition function can be written in the following form:

Z = ZTLSSS′, (58)

where
ZTLS = Tr{e−βHTLS} = 2 cosh(βE/2),

S = Tr{e−β(H (1)
z +HQ)},

S′ = Tr{e−βH (2)
z }.

(59)

Therefore, according to equations (57) and (58), we find that

Cv = 1

kBT 2

〈
∂2 ln ZTLS

∂β2
+ ∂2 ln S

∂β2
+ ∂2 ln S′

∂β2

〉
= CTLS + C (I) + C (II). (60)

By some calculations and after averaging over TLS parameters, we can easily show that (see
for example [1])

CTLS = π2

6
P0k2

BT ∝ T, (61)

which is independent of the magnetic field. The Zeeman contribution of the tunnelling particle’s
angular momentum (J ) in the partition function is simplified to the following form:

S′ =
J∑

m′=−J

eβm′ε′
z = sinh[βε ′

z(J + 1
2 )]

sinh[ βε′
z

2 ]
. (62)

Thus the Zeeman contribution of the angular momentum in the specific heat is given by

C (II) = P ′

kBT 2

〈
∂2 ln S′

∂β2

〉
= kBβ

2ε′2
z

4

× P ′
[

csch2

(
βε′

z

2

)
− (2J + 1)2csch2

(
βε′

z(2J + 1)

2

)]
, (63)

where P ′ is the concentration of intrinsic angular momentum times a constant which comes
from the averaging over the TLS parameters.

Finally, the contribution of the remaining term of the heat capacity to the specific heat,
C (I), is given by

C (I) = kBβ
2

〈
∂2 ln S

∂β2

〉
, (64)

where S = Tr{e−βH ′ } and H ′ = H (1)
z + HQ.

12
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As we have mentioned in the previous section the thermal energy exceeds by a few orders
of magnitude the Zeeman energy and the nuclear quadrupole potential. Therefore, βεz and βεq

are very small quantities, consequently βH ′ � 1. Therefore, equation (64) is approximated
by

C (I) = kBβ
2 ∂

2

∂β2
ln

[
Tr

(
1 − βH ′ + β2

2
H ′2 + · · ·

)]

= kB
β2

2I + 1

[
Tr(H ′2)− Tr(H ′)2

2I + 1

]
+ O(β3ε3), (65)

and finally we arrive at the following expression:

C (I) = P ′′kBβ
2[γ1ε

2
z + γ2ε

2
q] + O(β3ε3), (66)

where P ′′ is the concentration of the nuclear spin times a constant which comes from the
averaging over the TLS parameters. Here γ1 and γ2 are numerical constants which have been
defined by (see the appendix)

γ1 = 1

2I + 1

∑
m

[m2 cos2 θ ′ + sin2 θ ′[I (I + 1)− m2]],

γ2 = 1

2I + 1

∑
m

[
ϒ2

m,m+2 +ϒ2
m,m−2 − ϒ2

m,m

2I + 1

]
.

(67)

Equation (66) shows a quadratic dependence on the magnetic field. In the large field regime
C (II) contributes as a constant value to the whole specific heat. Thus, the field dependence of the
specific heat in the high magnetic fields comes from C (I), which shows a quadratic behaviour
versus the magnetic field. However, for the small field regime we have εz � ε′

z , which makes
C II have the dominant effect (C (I) � C (II)). It can be shown that when the magnetic field is
small the leading term of C II is given by the following expression:

C (II) 	 P ′kBβ
2ε′2

z

J (J + 1)

3
, (68)

which shows B2 behaviour for low magnetic fields.

4.1. Discussion of the field dependence of the heat capacity

In this section, we have studied the magnetic field dependence of the heat capacity of glasses
at low temperature. We have assumed that the tunnelling particles carry both an angular
momentum and a nuclear spin. So, the magnetic field couples to both terms.

We have examined our results numerically for arbitrary angle of EFG and different phases
between the quadrupole moments on each well. The final results are not influenced if we only
consider the simple case of θ = 0 and considering that εR

q = εL
q = εq . Thus, we have reported

our results in the mentioned special case where we can find an analytical expression for the
specific heat behaviour. In this respect, the total partition function of the system can be split
into the multiplication of three separate terms. Therefore, the heat capacity is composed of
three terms, the TLS contribution (CTLS), the nuclear (C (I)) and the angular momentum (C (II))
parts. The magnetic field dependence will arise from C (I) and C (II).

We have introduced the generalized Hamiltonian, which takes into account the mentioned
degrees of freedom. The direction of external magnetic (θ ′, φ′) field has been considered
arbitrary with respect to the EFG direction of each TLS. However, the outcome will be averaged
over this spherical angle, which can be contracted as a constant to the final results. We have
calculated the contribution of CTLS and C (II) exactly while the effect of nuclear spin (C (I)) has
been treated in a thermal expansion up to the second order corrections.

13
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Figure 1. Magnetic field (thermal) variation of the C (II).

(This figure is in colour only in the electronic version)

The different scale of Zeeman energy for the nuclear moment and the angular momentum
of the tunnelling entity is roughly εz/ε

′
z ≈ 10−3. Thus, for low magnetic fields βε ′

z < 10 the
dominant effect comes from the angular momentum part (C (II)). Our calculation shows that at
low magnetic field this contribution is proportional to the square of magnetic field, C (II) 	 B2

(equation (67)). However, C (II) reaches a maximum at βε ′
z 	 3 and then decreases to zero for

βε ′
z > 20 (see figure 1).

For low magnetic fields (B < 10 T) our result predicts a Schottky-like peak in the specific
heat of glasses which have nonzero angular momentum for the tunnelling entity, or at least the
sample has some impurity with nonzero J (angular momentum). This result is in agreement
with the recent experimental observations for Duran, AlBaSi [31] and Suprasil [26]. The data
show explicitly an upward increase of the specific heat versus the magnetic field for B < 0.5 T
and a monotonic decrease for B > 1 T at T < 1 K.

We have also predicted that for high magnetic fields (βε ′
z > 20) the dominant contribution

to the specific heat comes from the nuclear moments, which shows a quadratic dependence on
the field (equation (66)).

In this paper we have studied the special case where the impurities have only the intrinsic
angular momentum part. For the general case of impurities (for example electrons) with
angular momentum, J > 1

2 (spin + orbit), we should take into account the effect of spin–
orbit interaction, which means that at zero magnetic field the levels m ′ = −J, . . . , J − 1, J
may have different energies due to the crystal field splitting.

However, if we consider J = 0, which means we have a pure glass without magnetic
impurities like BK7, the nuclear quadrupole term is the only dominant term in the specific heat.
So, the present calculations predict a quadratic dependence on the magnetic field, and 1/T 2

dependence on temperature. As far as we know there is no experimental result for this case.
Therefore it might be a good suggestion for future experiments.
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5. Summary

Based on the polarization echo experiments [22] we believe that the nuclear quadrupole model
should provide the rightful explanation for the intriguing behaviour of the dielectric properties
of glasses. A relaxation spectrum rather sensitive to the orientation of the nuclear quadrupoles
is providing a relaxation susceptibility strongly dependent on the applied magnetic field [24],
driving us to the conclusion that the observed magnetic properties of glasses might have a
relaxation origin. Other effects like non-linearities with the voltage [30], or cooperative TLS
behaviour might as well be found to contribute.
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Appendix. Generalized TLS Hamiltonian with both nuclear spin and angular
momentum

The aim of this appendix is to find the generalized TLS Hamiltonian with both nuclear spin
and angular momentum. In a similar way as leading to equation (32), we can write the total
Hamiltonian as (

H L + �
2 · 1 �0

2 · 1
�0
2 · 1 H R − �

2 · 1

)
, (A.1)

where 1 is the unit matrix of rank (2I + 1)× (2J + 1). H L = V L
Q + H L

Z and H R = V R
Q + H R

Z
are defined for particles in the left and right wells, respectively. The state in each well (L or
R) can be characterized by |ψL(R)

[I,m],[J,m′ ]〉 = |L(R)〉⊗ |I,m〉⊗ |J,m ′〉 and consequently the
matrix element of the Hamiltonian is defined by the following equation:

H L(R)
mm′,nn′ = 〈ψL(R)

[I,m],[J,m′ ]|H L(R)|ψL(R)
[I,n],[J,n′ ]〉. (A.2)

After some simple algebra we can easily show that for H R
mm′,nn′ we obtain

H R
mm′,nn′ = {εR

q [ϒm,m−2e2iθ δm−2,n +ϒm,m+2e−2iθ δm+2,n]
− εz sin θ ′[eiφ ′

αm
−δm+1,n + e−iφ ′

αm
+δm−1,n]

+ [−m ′ε ′
z − εz cos θ ′m + εR

q ϒm,m ]δm,n}δm′,n′, (A.3)

where θ ′ and φ′ define the direction of magnetic field in the basis (e1, e2, e3); αm± and ϒm,m′ are
given by equations (35) and (36). In a similar manner we can obtain the matrix element of the
Hamiltonian for the particles in the left well H L

m,n by taking θ = 0 and changing εR
q �−→ εL

q in
the above equation.
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